Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=[x]$ for $x \in[-2,2]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$

$\Rightarrow f=(x)$ is not continuous in $[-2,2]$

Also, $f(-2)=[2]=-2$ and $f(2)=[2]=2$

$\therefore f(-2) \neq f(2)$

The differentiability of in $(-2,2)$ is checked as follows.

Let $\mathrm{n}$ be an integer such that $n \in(-2,2)$

The left hand limit of $f$ at $x=\mathrm{n}$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{ - 1}}{h} = \infty $

The right hand limit of $f$ at $x=n$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$

Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$

$\therefore f$ is not continuous in $(-2,2).$

It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Roller's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$

Similar Questions

Let $f (x)$ and $g (x)$ are two function which are defined and differentiable for all $x \ge x_0$. If $f (x_0) = g (x_0)$ and $f ' (x) > g ' (x)$ for all $x > x_0$ then

Examine the applicability of Mean Value Theorem:

$(i)$ $f(x)=[x]$ for $x \in[5,9]$

$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

Consider the function $f (x) = 8x^2 - 7x + 5$ on the interval $[-6, 6]$. The value of $c$ that satisfies the conclusion of the mean value theorem, is

If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals