Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to

  • [JEE MAIN 2023]
  • A

    $40$

  • B

    $10$

  • C

    $20$

  • D

    $30$

Similar Questions

Let $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$. If $\sum \limits_{ k =1}^n$ $D _{ k }=96$, then $n$ is equal to

  • [JEE MAIN 2023]

If the system of equations $(\lambda-1) x+(\lambda-4) y+\lambda z=5$, $\lambda x+(\lambda-1) y+(\lambda-4) z=7$, $(\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9$ has infinitely many solutions, then $\lambda^2+\lambda$ is equal to

  • [JEE MAIN 2025]

If $ 5$  is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are

If $\alpha+\beta+\gamma=2 \pi$, then the system of equations

$x+(\cos \gamma) y+(\cos \beta) z=0$

$(\cos \gamma) x+y+(\cos \alpha) z=0$

$(\cos \beta) x+(\cos \alpha) y+z=0$

has :

  • [JEE MAIN 2021]

For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations  $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?

  • [JEE MAIN 2020]