જો $A = \{x:x \in R,\,|x|\, < 1\}\,;$ $B = \{x:x \in R,\,|x - 1| \ge 1\}$ અને $A \cup B = R - D,$ તો ગણ $D$ એ . . .
$\{x:1 < x \le 2\}$
$\{x:1 \le x < 2\}$
$\{x:1 \le x \le 2\}$
એકપણ નહિ.
ધારો કે $S = \{ x \in R:x \ge 0$ અને $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ તો $S:$ . . .
જો $A = \{x, y\}$ તો $A$ ના ઘાતગણ મેળવો.
ધારો કે $A =\{ x \in R :| x +1|<2\}$ અને $B=\{x \in R:|x-1| \geq 2\}$ તો નીયેના પૈકી કયું વિધાન સાચું નથી?
ધારો કે $A=\{n \in N: H . C . F .(n, 45)=1\}$ અને ધારો કે $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$.તો $A \cap B$ ના તમામ ઘટકોનો સરવાળો$\dots\dots\dots$
$2n (A / B) = n (B / A)$ અને $5n (A \cap B) = n (A) + 3n (B) $, જ્યાં $P/Q = P \cap Q^C$ જો $n (A \cup B) \leq 10$ હોય તો $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ ની કિમત ...... થાય