माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$  $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.

  • [JEE MAIN 2023]
  • A

    $8$

  • B

    $6$

  • C

    $3$

  • D

    $12$

Similar Questions

एक व्यक्ति की प्रथम वर्ष में आय $3,00,000$ रुपये है तथा उसकी आय $10,000$ रुपये प्रति वर्ष, उन्नीस वर्षों तक बढती है, तो उसके द्वारा $20$ वर्षों में प्राप्त आय ज्ञात कीजिए।

तीन समांतर श्रेणियों

$3,7,11,15, \ldots \ldots . . . ., 399$,

$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा

$2,7,12,17, \ldots \ldots . ., 197$,

के उभ्यनिष्ठ पदों का योग है ____________I

  • [JEE MAIN 2023]

माना $a _{1}, a _{2}, \ldots \ldots a _{30}$ एक समांतर श्रेणी है. $S =\sum_{i=1}^{30} a _{i}$ तथा $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $ यदि $a _{5}=27$ तथा $S -2 T =75$, तो $a _{10}$ बराबर है

  • [JEE MAIN 2019]

श्रेणियों $3+7+11+15+\ldots$ तथा $1+6+11+16+\ldots \ldots$, के बीच उभयनिष्ठ प्रथम $20$ पदों का योग है

  • [JEE MAIN 2014]

माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|

  • [IIT 2018]