Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?

$I$. It has at least one negative root.

$II$. It has at least one positive root.

$III$. Both its roots are real.

  • [KVPY 2013]
  • A

    $I$ and $II$ only

  • B

    $I$ and $III$ only

  • C

    $II$ and $III$ only

  • D

    All of them

Similar Questions

Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to

  • [KVPY 2015]

Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ , and $\alpha  < \beta $.  Then $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to

  • [JEE MAIN 2019]

The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is

  • [KVPY 2014]

If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is