Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?
$I$. It has at least one negative root.
$II$. It has at least one positive root.
$III$. Both its roots are real.
$I$ and $II$ only
$I$ and $III$ only
$II$ and $III$ only
All of them
Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to
Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ , and $\alpha < \beta $. Then $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to
The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is
If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is