Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,
$A$ is a discrete set of a least two points
$A$ contains an interval, but is not an interval
$A$ is an interval, but a proper subset of $(-\infty, \infty)$
$A=(-\infty, \infty)$
Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$
Which of the following is correct
Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is
Domain of function $f(x) = log|5{x} - 2x|$ is $x \in R - A$, then $n(A)$ is (where $\{.\}$ denotes fractional part function)
Range of $f(x) = \;[x]\; - x$ is