Range of $f(x) = \;[x]\; - x$ is

  • A

    $[0, 1]$

  • B

    $(-1, 0]$

  • C

    $R$

  • D

    $(-1, 1)$

Similar Questions

Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$

  • [JEE MAIN 2021]

If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, x \in R$, then $\sum_{k=1}^{81} f\left(\frac{k}{82}\right)$ is equal to :

  • [JEE MAIN 2025]

Show that none of the operations given above has identity.

The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is 

Let a function $f : R \rightarrow  R$ is defined such that $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \  \forall  x \in R$, then the value of $f(5)$ is-