અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
જો મધ્યક $X$ એ $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.
$781$
$100$
$529$
$1310$
એક વિદ્યાર્થીએ એક અવલોકન ભૂલથી $15$ ને બદલે $25$ લઈને ગણેલ $10$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $15$ અને $15$ છે. તી સાયું પ્રમાણિત વિચલન ............ છે.
ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
ધારો કે,$9 < x_1 < x_2 < \ldots < x_7$ એ સમાંતર શ્રેણી $(A.P)$ માં છે અને તેનો સામાન્ય તફાવત $d$ છે.જો $x_1, x_2 \ldots,x _7$ નું પ્રમાણિત વિચલન $4$ હોય અને મધ્યક $\overline{ x }$ હોય,તો $\overline{ x }+ x _6=............$
ધારોકે ગણ $A$ અને $B$ બન્ને માં $5$ ઘટકો છે.ધારોકે ગણ $A$ અને $B$ ના ધટકોના મધ્યક અનુક્રમે $5$ અને $8$ છે તથા ગણ $A$ અને $B$ ના ઘટકોનું વિચરણ અનુક્રમે $12$ અને $20$ છે.$A$ ના પ્રત્યેક ઘટકોમાંથી $3$ બાદ કરીને અને $B$ના પ્રત્યેક ઘટકોમાં $2$ ઉમેરીને $10$ ધટકોવાળો નવો ગણ $C$ બનાવવામાં આવે છે.તો $C$ ના ધટકોના મધ્યક અને વિચરણનો સરવાળો $.......$ છે.