If $A = \{x, y\}$ then the power set of $A$ is
$\{ {x^x},\,{y^y}\} $
$\{ \phi,x, y\}$
$\{\phi, {x}, {2y}\}$
$\{\phi, x, y, \{ x, y \} \}$
Let $a>0, a \neq 1$. Then, the set $S$ of all positive real numbers $b$ satisfying $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ is
$S=\{(x, y, z): x, y, z \in Z, x+2 y+3 z=42$ $\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0\}$ ...........
Let $A=\{n \in N: H . C . F .(n, 45)=1\}$ and Let $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$. Then the sum of all the elements of $A \cap B$ is
Let $A =\{ x \in R :| x +1|<2\}$ and $B=\{x \in R:|x-1| \geq 2\}$. Then which one of the following statements is NOT true ?
Let $A_1, A_2, \ldots \ldots, A_m$ be non-empty subsets of $\{1,2,3, \ldots, 100\}$ satisfying the following conditions:
$1.$ The numbers $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ are distinct.
$2.$ $A_1, A_2, \ldots, A_m$ are pairwise disjoint.(Here $|A|$ donotes the number of elements in the set $A$ )Then, the maximum possible value of $m$ is