If $A = \{x, y\}$ then the power set of $A$ is
$\{ {x^x},\,{y^y}\} $
$\{ \phi,x, y\}$
$\{\phi, {x}, {2y}\}$
$\{\phi, x, y, \{ x, y \} \}$
Let $S = \{1, 2, 3, ….., 100\}$. The number of non-empty subsets $A$ of $S$ such that the product of elements in $A$ is even is
Let $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ where each $X_{i}$ contains $10$ elements and each $Y_{i}$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_{i}$ 's and exactly $6$ of sets $Y_{i}$ 's, then $n$ is equal to
Let $A =\{ x \in R :| x +1|<2\}$ and $B=\{x \in R:|x-1| \geq 2\}$. Then which one of the following statements is NOT true ?
Let $a>0, a \neq 1$. Then, the set $S$ of all positive real numbers $b$ satisfying $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ is
Let the set $C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$. Then $\sum_{(x, y) \in C}(x+y)$ is equal to