$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?
$(a, b) \in R ,(b, c) \in R$ का तात्पर्य है कि $(a, c) \in R ?$
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in N$ and $9=3^{2}$ and $16=4^{2}$
Now, $9 \neq 4^{2}=16 ;$ therefore, $(9,4)$ $\notin N$
Therefore, the statement $''(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R^{\prime \prime}$ is not true.
मान लीजिए कि $A =\{1,2,3,4,6\} .$ मान लीजिए कि $R , A$ पर $\{(a, b): a, b \in A ,$ संख्या $a$ संख्या $b$ को यथावथ विभाजित करती है $\}$ द्वारा परिभाषित एक संबंध है।
$R$ का परिसर ज्ञात कीजिए।
मान लीजिए कि $A =\{1,2,3,4,5,6\} . R =\{(x, y): y=x+1\}$ द्वारा $A$ से $A$ में एक संबंध परिभाषित कीजिए
इस संबंध को एक तीर आरेख द्वारा दर्शाइए।
$A =\{1,2,3,5\}$ और $B =\{4,6,9\} . A$ से $B$ में एक संबंध $R =\{(x, y): x$ और $y$ का अंतर विषम है, $x \in A , y \in B \}$ द्वारा परिभाषित कीजिए। $R$ को रोस्टर रूप में लिखिए।
संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।
माना कि $S=\{1,2,3,4,5,6\}$ है, और $X, S$ से $S$ में उन सभी संबंधों (relations) $R$ का समुच्चय (set) है जो निम्नलिखित दोनों गुणधर्मों (properties) को संतुष्ट करते हैं:
$i.$ $R$ में ठीक (exactly) 6 अवयव (elements) हैं।
$ii.$ प्रत्येक $(a, b) \in R$ के लिए $|a-b| \geq 2$ है।
माना कि $Y=\{R \in X: R$ के परिसर (range) में ठीक (exactly) एक अवयव (element) है $\}$
और $Z=\{R \in X: R, S$ से $S$ में एक फलन (function) है $\}$ ।
माना कि $n(A)$, समुच्चय $A$ में अवयवों की संख्या (number of elements) को दर्शाता है।
($1$) यदि $n(X)={ }^m C_6$ है, तब $m$ का मान .......... है।
($2$)यदि $n(Y)+n(Z)$ का मान $k^2$ है, तब $|k|$ .......... है।
इस प्रश्न के उतर दीजिये $1$ ओर $2.$