मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, b) \in R$ और $(b, c) \in R$ का तात्पर्य है कि $(a, c) \in R$
$(a, b)$ and $(b, c) \in R$ implies that $a-b \in Z . b-c \in Z .$ So, $a-c=(a-b)+(b-c) \in Z .$ Therefore, $(a, c) \in R$
मान लीजिए कि $A =\{x, y, z\}$ और $B =\{1,2\}, A$ से $B$ के संबंधों की संख्या ज्ञात कीजिए।
प्राकृत संख्याओं के समुच्चय पर $R =\{(x, y): y=x+5, x$ संख्या $4$ से कम, एक प्राकृत संख्या है, $x, y \in N \}$ द्वारा एक संबंध $R$ परिभाषित कीजिए। इस संबंध को $(i)$ रोस्टर रूप में इसके प्रांत और परिसर लिखिए।
संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।
नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं ?
मान लीजिए कि $R , Z$ पर, $R =\{(a, b): a, b \in Z , a-b$ एक पूर्णाक है $\},$ द्वारा परिभाषित एक संबंध है। $R$ के प्रांत तथा परिसर ज्ञात कीजिए।