Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that

$(a, a) \in R$ for all $a \in Q$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since, $a-a=0 \in Z ,$ if follows that $(a, a) \in R$

Similar Questions

The Fig shows a relation between the sets $P$ and $Q$. Write this relation 

in roster form

What is its domain and range ?

Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
Are the following true?

$f$ is a relation from $A$ to $B$

Justify your answer in each case.

Let $X = \{ 1,\,2,\,3,\,4,\,5\} $ and $Y = \{ 1,\,3,\,5,\,7,\,9\} $. Which of the following is/are relations from $X$ to $Y$

Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, b) \in R,$ implies $(b, a) \in R$

Define a relation $R$ on the set $N$ of natural numbers by $R=\{(x, y): y=x+5$ $x $ is a natural number less than $4 ; x, y \in N \} .$ Depict this relationship using roster form. Write down the domain and the range.