Let $A, B$ and $C$ be sets such that $\phi \ne A \cap B \subseteq C$. Then which of the following statements is not true ?
If $\left( {A - C} \right) \subseteq B$ then $A \subseteq B$
If $\left( {A - B} \right) \subseteq C$ then $A \subseteq C$
$\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$
$B \cap C \ne \phi $
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup D} \right)$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$\left( {A \cap B} \right) \cap \left( {B \cup C} \right)$
If $A, B, C$ are three sets, then $A \cap (B \cup C)$ is equal to
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$D-A$