$U=\{1,2,3,4,5,6\}, A=\{2,3\}$ અને $B=\{3,4,5\}.$ $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ શોધો અને તે પરથી બતાવો કે $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}.$
$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. $(B-C)^{\prime}$ મેળવો
ખાલી જગ્યા પૂરો : $A \cup A^{\prime}=\ldots$
પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો : $\{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $
જો $U=\{a, b, c, d, e, f, g, h\}$ હોય, તો નીચેના ગણના પૂરક ગણ શોધો : $B=\{d, e, f, g\}$