For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
Let $X \in P\left( {A \cap B} \right).$ Then $X \subset A \cap B.$ So, $X \subset A$ and $X \subset B.$ Therefore, $X \in P\left( A \right)$ and $X \in P\left( B \right)$ which implies $X \in P\left( A \right) \cap P\left( B \right).$ This given $P\left( {A \cap B} \right) \subset P\left( A \right) \cap P\left( B \right).$ Let $Y \in P\left( A \right) \cap P\left( B \right).$ Then $Y \in P\left( A \right)$ and $Y \in P\left( B \right).$ So, $Y \subset A$ and $Y \subset B$ Therefore, $Y \subset A \cap B,$ Which implies $Y \in P\left( {A \cap B} \right).$ This gives
$P\left( A \right) \cap P\left( B \right) \subset P\left( {A \cap B} \right)$
Hence $P\left( {A \cap B} \right) = P\left( A \right) \cap P\left( B \right)$
If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $
Find the union of each of the following pairs of sets :
$X =\{1,3,5\} \quad Y =\{1,2,3\}$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$B \cup D$
Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$