If $A, B$ and $C$ are non-empty sets, then $(A -B) \cup (B -A)$ equals
$(A \cup B) -B$
$A -(A \cap B)$
$(A \cup B) -(A \cap B)$
$(A \cap B) \cup (A \cup B)$
Show that $A \cup B=A \cap B$ implies $A=B$.
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X-Y$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$C \cap D$
Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$
Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$