If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

  • A

    $(A  \cup B) -B$

  • B

    $A -(A  \cap B)$

  • C

    $(A  \cup B) -(A  \cap B)$

  • D

    $(A \cap B)  \cup (A  \cup B)$

Similar Questions

Show that $A \cup B=A \cap B$ implies $A=B$.

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$X-Y$

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$C \cap D$

Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$

Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$