Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$

Write down the domain, codomain and range of $R .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We can see that the domain $=\{1,2,3,4,5,\}$

Similarly, the range $=\{2,3,4,5,6\}$ and the codomain $=\{1,2,3,4,5,6\}$

Similar Questions

Let $X = \{ 1,\,2,\,3,\,4,\,5\} $ and $Y = \{ 1,\,3,\,5,\,7,\,9\} $. Which of the following is/are relations from $X$ to $Y$

Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, a) \in R ,$ for all $a \in N$

Define a relation $R$ on the set $N$ of natural numbers by $R=\{(x, y): y=x+5$ $x $ is a natural number less than $4 ; x, y \in N \} .$ Depict this relationship using roster form. Write down the domain and the range.

Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$

Depict this relation using an arrow diagram.

The Fig shows a relationship between the sets $P$ and $Q .$ Write this relation

in set-builder form 

What is its domain and range?