Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?
$(a, a) \in R ,$ for all $a \in N$
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $2 \in N$; however, $2 \neq 2^{2}=4$
Therefore, the statement $''(a, a) \in R,$ for all $a \in N ^{\prime \prime}$ is not true.
The Fig shows a relationship between the sets $P$ and $Q .$ Write this relation
in set-builder form
What is its domain and range?
Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that
$(a, b) \in R$ implies that $(b, a) \in R$
The Fig shows a relation between the sets $P$ and $Q$. Write this relation
in set - bulider form,
What is its domain and range ?
Let $A=\{1,2,3,4,6\} .$ Let $R$ be the relation on $A$ defined by $\{ (a,b):a,b \in A,b$ is exactly divisible by $a\} $
Find the range of $R$
Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
Depict this relation using an arrow diagram.