Let $A, B$ and $C$ be three sets. If $A \in B$ and $B \subset C$, is it true that $A$ $\subset$ $C$ ?. If not, give an example.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

No. Let $A=\{1\}, B=\{\{1\}, 2\}$ and $C=\{\{1\}, 2,3\} .$ Here $A \in B$ as $A=\{1\}$ and $B \subset C$. But $A \not\subset C$ as $1 \in A$ and $1 \notin C$

Note that an element of a set can never be a subset of itself.

Similar Questions

Which of the following pairs of sets are equal ? Justify your answer.

$\mathrm{X} ,$ the set of letters in $“\mathrm{ALLOY}"$ and $\mathrm{B} ,$ the set of letters in $“\mathrm{LOYAL}”.$

State whether each of the following set is finite or infinite :

The set of circles passing through the origin $(0,0)$

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 0\, ........\, A $

Which of the following sets are finite or infinite.

The set of prime numbers less than $99$

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 2 \, ....... \, A $