Let $p, q, r$ denote arbitrary statements. Then the logically equivalent of the statement $p\Rightarrow (q\vee r)$ is
$(p \vee q) \Rightarrow r$
$(p \Rightarrow q) \vee (p \Rightarrow r)$
$(p \Rightarrow \sim q) \wedge (p \Rightarrow r)$
$(p \Rightarrow q) \wedge (p \Rightarrow \sim r)$
Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
The false statement in the following is
The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :
$(\sim (\sim p)) \wedge q$ is equal to .........