જો $f : R \to R$ માટે વિધેય $f(x) = - \frac{{|x{|^5} + |x|}}{{1 + {x^4}}}$;હોય તો $f(x)$ નો ગ્રાફ .......... ચરણમાંથી પસાર થાય.
$I$ અને $II$
$I$ અને $III$
$II$ અને $III$
$III$ અને $IV$
વિધેય $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ નો પ્રદેશગણ મેળવો.
$f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ નો પ્રદેશગણ મેળવો.
જો વિધેય $f\,:\,R - \,\{ 1, - 1\} \to A$ ; $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}}$ એ વ્યાપ્ત વિધેય હોય તો $A$ મેળવો .
સાબિત કરો કે વિધેય $f : R \rightarrow R$, $f ( x )= x ^{3}$ એક-એક છે.
વિધેય $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ ના વિકલીતનો પ્રદેશ મેળવો.