Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$
The given equation is $16 x^{2}+y^{2}=16$
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$
Or, $\frac{ x ^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$ ........ $(1)$
Here, the denominator of $\frac{ x ^{2}}{4^{2}}$ is greater than the denominator of $\frac{ x ^{2}}{1^{2}}$.
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =1$ and $a =4$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$
Therefore,
The coordinates of the foci are $(0, \,\pm \sqrt{15})$
The coordinates of the vertices are $(0,\,±4)$
Length of major axis $=2 a=8$
Length of minor axis $=2 b =2$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$
If $P$ lies in the first quadrant on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ (where $a > b$ ), and tangent & normal drawn at $P$ meets major axis at the points $T$ & $N$ respectively, then the value of $\frac{{\left( {\left| {{F_2}N} \right| + \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| - \left| {{F_1}T} \right|} \right)}}{{\left( {\left| {{F_2}N} \right| - \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| + \left| {{F_1}T} \right|} \right)}}$ is equal to (where $F_1$ & $F_2$ are the foci $(ae, 0)$ & $(-ae, 0)$ respectively)
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
($A$) The area of the quadrilateral $A_1 A _2 A _3 A _4$ is $35$ square units
($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units
($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$
($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$
For the ellipse $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ the eccentricity $e = $
Let $P$ be a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with foci ${F_1}$ and ${F_2}$. If $A$ is the area of the triangle $P{F_1}{F_2}$, then maximum value of $A$ is
Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.