જો ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , હોય તો $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ ની કિમત મેળવો
$\left( {\frac{{{2^{21}} - 1}}{{21}}} \right)$
$\left( {\frac{{{3^{21}} - 1}}{{21}}} \right)$
$\left( {\frac{{{2^{20}} - 1}}{{20}}} \right)$
$\left( {\frac{{{3^{20}} - 1}}{{20}}} \right)$
ધારો કે $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3!}+\frac{{ }^3 \mathrm{C}_2}{4!}+\frac{{ }^4 \mathrm{C}_2}{5!}+\ldots$, $\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1!}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2!}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3!}+\ldots .$ તો $\frac{2 b}{a^2}=$...........
જો $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+ $ $ (\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots . .+(\mathrm{x}+2)^{\mathrm{n}-1}$ માં $x^r$ નો સહગુણક $\alpha_{\mathrm{r}}$ છે. જો $\sum_{\mathrm{r}-0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, તો $\beta^2+\gamma^2=$..................
$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $
$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે.
${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.