જો $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ અને $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ મા અનુક્રમે સાત અને ત્રણ ભિન્ન સભ્યો હોય તો વિધેય $f:A \to B$ ની કુલ સંખ્યા ..... મળે કે જેથી વિધેયો વ્યાપત થાય જ્યા ત્રન સભ્યો $x$ ન એ ગણ $A$ મા એવા છે કે જેથી $f(x) = {y_2}$ થાય
$14{(^7}{C_2})$
$16{(^7}{C_3})$
$12{(^7}{C_2})$
$14{(^7}{C_3})$
વિધેય $f(x)$=$\sqrt {(x + 4)(1 - x)} - {\log _2}x$ ના વિસ્તારગણ મા ન્યુનતમ પુર્ણાક .... છે.
વિધેય $y = f(x)$ નો આલેખ $x = 2$ ને સમિત હોય તો
ધારો કે $S =\{1,2,3,4,5,6\}$ અને $P ( S )$ એ $S$ નો ઘાતગણ દર્શાવે છે.તો જયારે $n < m$ હોય ત્યારે $f(n) \subset f(m)$ થાય તેવા એક-એક વિધેયો $f: S \rightarrow P(S)$ ની સંખ્યા $........$ છે.
વિધેય $f$ એ ગણ $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ થી ગણ $B=\left\{n^{2}: n \in N\right\}$ કે જેથી દરેક $x \in A$ માટે $f(x) \leq(x-3)^{2}+1$ તેવા વિધેય $f$ ની સંખ્યા મેળવો.
જો $f(x) = sin\,x,\,\,g(x) = x.$
વિધાન $1:$ $f(x)\, \le \,g\,(x)$ દરેક $x \in (0,\infty )$
વિધાન $2:$ $f(x)\, \le \,1$ દરેક $(x)\in (0,\infty )$ પરંતુ $g(x)\,\to \infty$ જો $x\,\to \infty$ હોય તો .