જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{ 5}}}}$ ની કિમત મેળવો.
$5^4$
$4(5^2)$
$5^3$
$2(5^2)$
જો સમગુણોતર શ્રેણીના અનંત પદનો સરવાળો $20$ હોય તથા તેમના વર્ગોનો સરવાળો $100$ હોય તો સમગુણોતર શ્રેણીનો ગુણોતર મેળવો.
ધારોકે $a_1, a_2, a_3, \ldots .$. વધતી ધન સંખ્યાઓ ની સમગુણોત્તર શ્રેણી છે.ધારોકે તેના છઠા અને $8$મા પદોનો સરવાળો $2$ છે તથા તેના ત્રીજા અને $5$મા પદોનો ગુણાકાર $\frac{1}{9}$ છે.તો $6\left(a_2+a_4\right)\left(a_4+a_6\right)=.....$
$\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\,\,(x \ne 0)$ હોય તો ${\text{a, b, c}}$ અને ${\text{d}}$ એ...........
સમગુણોત્તર શ્રેણીના પ્રથમ દસ પદોનો સરવાળો $S_1$ છે અને તે પછીના દસ પદોનો ($11$ થી $20$) સરવાળો $S_2$ છે. તો સામાન્ય ગુણોત્તર કેટલો થશે ?