જો $d \in R$, અને  $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta  \in \left[ {0,2\pi } \right]$. જો $det (A)$ ની ન્યૂનતમ કિમંત  $8$, હોય તો $d$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $-5$

  • B

    $-7$

  • C

    $2\left( {\sqrt 2  + 1} \right)$

  • D

    $2\left( {\sqrt 2  + 2} \right)$

Similar Questions

જો રેખાઓની સંહતિ $x+ ay+z\,= 3$ ; $x + 2y+ 2z\, = 6$ ; $x+5y+ 3z\, = b$ ને એકપણ ઉકેલ શકય ન હોય તો  . . .

  • [JEE MAIN 2018]

$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ  $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.

  • [JEE MAIN 2023]

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.

$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$