જો $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , જ્યાં $[n]$ મહત્તમ પૂર્ણાંક વિધેય હોય તો $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ ની કિમત મેળવો. 

  • [JEE MAIN 2014]
  • A

    $56$

  • B

    $689$

  • C

    $1287$

  • D

    $1399$

Similar Questions

વિધેય $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, કે જ્યાં $p > 0,\;q > 0,\;r > 0$ ની ન્યૂનતમ કિમંત ધારો કે માત્ર એકજ બિંદુએ મળે જો  . . . 

  • [IIT 1995]

જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.

ધારો કે  $f : N \rightarrow R$ એવું વિધેય છે કે જેથી  પ્રાકૃતિક સંખ્યાઓ $x$ અને $y$ માટે $f(x+y)=2 f(x) f(y)$. જો $f(1)=2$, તો $\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ થાય તે  માટેની $\alpha$ ની કિમત ....... છે.

  • [JEE MAIN 2022]

જો વિધેય $f\,:\,R - \,\{ 1, - 1\}  \to A$ ; $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}}$ એ વ્યાપ્ત વિધેય હોય તો $A$ મેળવો .

  • [JEE MAIN 2019]

$f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ નો વિસ્તારગણ .......... થાય