माना कि $\overrightarrow{ A }=(\hat{i}+\hat{j})$ एवं $\overrightarrow{ B }=(2 \hat{i}-\hat{j})$ है। एक समतल वेक्टर $\vec{C}$ इस प्रकार है कि $\overrightarrow{ A } \cdot \overrightarrow{ C }=\overrightarrow{ B } \cdot \overrightarrow{ C }=\overrightarrow{ A } \cdot \overrightarrow{ B }$, तो $\overrightarrow{ C }$ का परिमाण होगा

  • [JEE MAIN 2018]
  • A

    $\sqrt {\frac{5}{9}} $

  • B

    $\sqrt {\frac{10}{9}} $

  • C

    $\sqrt {\frac{20}{9}} $

  • D

    $\sqrt {\frac{9}{12}} $

Similar Questions

सदिश $\mathop A\limits^ \to $ और $\mathop B\limits^ \to $ के बीच का कोण $\theta $ हो तो त्रिक गुणनफल $\mathop A\limits^ \to \,.\,(\mathop B\limits^ \to \times \mathop A\limits^ \to \,)$ का मान होगा

  • [AIPMT 1991]

$\mathop A\limits^ \to = 2\hat i + 4\hat j + 4\hat k$ तथा $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ दो सदिश हैं। उनके मध्य कोण ........ $^o$ होगा

दो सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ एक दूसरे के लम्बवत होंगे जबकि

  • [AIIMS 1987]

किन्ही दो सदिश $\overrightarrow A $ तथा $\overrightarrow B $ के लिये यदि $\mathop A\limits^ \to \,.\,\mathop B\limits^ \to = \,\,|\mathop A\limits^ \to \times \mathop B\limits^ \to |$ हो तो $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ का परिमाण होगा

$(\overrightarrow A - \overrightarrow B )$ तथा $(\overrightarrow A \times \overrightarrow B )$ सदिशों के बीच कोण है $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]