Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then
$\phi (2) = 2$
$\phi (1) = 0$
$\phi (-1.5) = 0.5$
None
The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is
Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is
If $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ for $x \in R$, then $f(2002) = $
Which of the following function is surjective but not injective
Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is