Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is

  • A

    $\left[ { - 6, - 2} \right) \cup \left[ {1,2} \right)$

  • B

    $\left[ { - 6,2} \right)$

  • C

    $\left[ { - 6,1} \right)$

  • D

    $\left( { - 2,2} \right)$

Similar Questions

If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $

If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{\varepsilon}(123)}{x \log _{\varepsilon}(1234)-\left(\tan 1^{\circ}\right)}, x > 0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is $...........$.

  • [JEE MAIN 2023]

Domain of the function $f(x)\,=\,\frac{1}{{\sqrt {(x + 1)({e^x} - 1)(x - 4)(x + 5)(x - 6)} }}$

The number of bijective functions $f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$, such that $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ is

  • [JEE MAIN 2022]

If $f( x + y )=f( x ) f( y )$ and $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ where $N$ is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is

  • [JEE MAIN 2020]