જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે

  • A

    $1 \le b \le 2$

  • B

    $b = \{ 1,2\} $

  • C

    $b \in ( - \infty , - 1)$

  • D

    $\left[ { - \sqrt {130} , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\sqrt {130} } \right]$

Similar Questions

જો વિધેય $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ અને $g(x) = \sqrt {3 + 4x - 4{x^2}} $, તો $gof$ નો પ્રદેશ મેળવો.

  • [IIT 1990]

$f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$ નો પ્રદેશગણ મેળવો.

જો $x > 2$ માટે $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ ,તો $f(11) = $

સાબિત કરો કે $f: R \rightarrow R$, $f(x)=x^{2},$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. 

જો $f\,:\,R \to R$ પર વિધેય $f\left( x \right) = {x^3} + {x^2}f'\left( 1 \right) + xf''\left( 2 \right) + f'''\left( 3 \right)$, $x \in R$ તો $f(2)$ મેળવો.

  • [JEE MAIN 2019]