જો વિધેય $f(x)$ એ $[0,2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે અને જો $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ દરેક $x \in \left[ {0,2} \right]$, તો . . .
$f\left( x \right) \geqslant 2$
$\left| {f\left( x \right)} \right| \leqslant 1$
$f\left( x \right) = 2x$
ઓછામાં ઓછી $x$ ની એક કિમંત $[0,2]$ માં મળે કે જેથી $f(x) = 3$
$\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ ની કિમંત મેળવો . (કે જ્યાં [.] એ મહતમ પૃણાંક વિધેય છે.)
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
મધ્યકમાન પ્રમેય મુજબ $f(b) - f(a) = $ $(b - a)f'({x_1});$ $a < {x_1} < b$ જો $f(x) = {1 \over x}$, તો ${x_1} = $
$C $ ના કયા મૂૂલ્ય માટે સરેરાશ મૂલ્ય પ્રમેયનું તારણ એ અંતરલાર $[1, 3]$ પર વિધેય $f(x) = log_ex $ ને પ્રાપ્ત કરે છે?
ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી
$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.
નીચેના બે વિધાનો ધ્યાને લો.
$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$
$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,