It is not convenient to use a spherical Gaussian surface to find the electric field due to an electric dipole using Gauss’s theorem because
Gauss’s law fails in this case
This problem does not have spherical symmetry
Coulomb’s law is more fundamental than Gauss’s law
Spherical Gaussian surface will alter the dipole moment
A sphere of radius $R$ and charge $Q$ is placed inside a concentric imaginary sphere of radius $2R$. The flux associated with the imaginary sphere is
The circular wire in figure below encircles solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page. The clockwise emf around the circular loop is $\varepsilon_{0}$. By definition a voltammeter measures the voltage difference between the two points given by $V_{b}-V_{a}=-\int \limits_{a}^{b} E \cdot d s$ We assume that $a$ and $b$ are infinitesimally close to each other. The values of $V_{b}-V_{a}$ along the path $1$ and $V_{a}-V_{b}$ along the path $2$ , respectively are
Total electric flux coming out of a unit positive charge put in air is
Explain electric flux.
Electric lines of force about negative point charge are