Electric lines of force about negative point charge are
Circular, anticlockwise
Circular, clockwise
Radial, inward
Radial, outward
Choose the incorrect statement :
$(a)$ The electric lines of force entering into a Gaussian surface provide negative flux.
$(b)$ A charge ' $q$ ' is placed at the centre of a cube. The flux through all the faces will be the same.
$(c)$ In a uniform electric field net flux through a closed Gaussian surface containing no net charge, is zero.
$(d)$ When electric field is parallel to a Gaussian surface, it provides a finite non-zero flux.
Choose the most appropriate answer from the options given below
An infinite, uniformly charged sheet with surface charge density $\sigma$ cuts through a spherical Gaussian surface of radius $R$ at a distance $x$ from its center, as shown in the figure. The electric flux $\Phi $ through the Gaussian surface is
Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is
A rectangular surface of sides $10 \,cm$ and $15 \,cm$ is placed inside acyniform electric field of $25 \,V / m$, such that the surface makes an angle of $30^{\circ}$ with the direction of electric field. Find the flux of the electric field through the rectangular surface .................. $Nm ^2 / C$
Shown below is a distribution of charges. The flux of electric field due to these charges through the surface $S$ is