भारत, वेस्टइंडीज व आस्ट्रेलिया प्रत्येक से $2$ मैच खेलता है। किसी भी मैच में भारत के अंक $0, 1, 2$ अर्जित करने की प्रायिकतायें क्रमश: $0.45, 0.05$ व $0.50$ हैं। यह मानकर कि परिणाम स्वतन्त्र हैं भारत के कम से कम $7$ अंक अर्जित करने की प्रायिकता है
$0.875$
$0.0875$
$0.0625$
$0.0250$
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $
किसी विद्यार्थी के $IIT$ परीक्षा में सफल होने की प्रायिकता $0.2$ एवं रूड़की परीक्षा में सफल होने की प्रायिकता $0.5$ है। यदि उसके दोनों परीक्षाओं में सफल होने की प्रायिकता $0.3$ है, तो उसके दोनों परीक्षाओं में असफल होने की प्रायिकता होगी
एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि उनमें से तथ्यत: कोई एक समस्या हल कर लेता है।
यदि $A$ व $B$ कोई दो घटनाएँ हैं, तो $P(A \cup B) = $
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है