આપેલા આવૃત્તિમાં, $M$ દળ ધરાવતો પદાર્થ બે દળરહિત સ્પ્રિંગો વચ્ચે ઘર્ષણરહિત ઢળતા સમતલ (ઢોળાવ) પર રાખવામાં (બાંધવામાં) આવેલ છે. સ્પ્રિંગોનાં મુક્ત છેડાઓને જડ-આધાર સાથે જોડવામાં આવેલ છે. જે દરેક સ્પ્રિંગનો બળ અચળાંક $k$ હોય તો પદાર્થનાં દોલનની આવૃત્તિ ...... છે.
$\frac{1}{2 \pi} \sqrt{\frac{ k }{2 M }}$
$\frac{1}{2 \pi} \sqrt{\frac{2 k }{ Mg \sin \alpha}}$
$\frac{1}{2 \pi} \sqrt{\frac{2 k }{ M }}$
$\frac{1}{2 \pi} \sqrt{\frac{ k }{ Mg \sin \alpha}}$
પુનઃસ્થાપક બળ એટલે શું?
સમાન બળ અચળાંક $K$ ધરાવતી બે સ્પ્રિગો સાથે $m$ દળ જોડવામાં આવે તો નીચે પ્રમાણેની $4$ રચનાઓ શક્ય બને છે. જ્યાં $T_1, T_2, T_3$ અને $T_4$ તેમનો આવર્તકાળ છે. તો કેટલા કિસ્સામાં આવર્તકાળ મહત્તમ હશે ?
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m$ દ્રવ્યમાનને બે દોરી વચ્ચે લગાવેલ છે. બે સ્પ્રિંગોના સ્પ્રિંગ અચળાંક $K_1$ અને $K _2$ છે. ઘર્ષણ મુકત સપાટી પર $m$ દળના દોલનનો આવર્તકાળ છે.
સાદા લોલક અને લોલકના લંબાઈની વ્યાખ્યા આપો.
$5\, {kg}$ દળને સ્પ્રિંગ સાથે જોડેલ છે. આ તંત્ર દ્વારા થતી સરળ આવર્તગતિની સ્થિતિઊર્જાનો ગ્રાફ આકૃતિમાં દર્શાવેલ છે. $4\, {m}$ લંબાઈના સાદા લોલકનો આવર્તકાળ સ્પ્રિંગતંત્રના આવર્તકાળ જેટલો જ છે. જ્યાં આ પ્રયોગ કરવામાં આવેલ છે તે ગ્રહ પર ગુરુત્વપ્રવેગનું મૂલ્ય (${m} / {s}^{2}$ માં) કેટલું હશે?