In the following the correct bond order sequence is :
$\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
$\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}$
$\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
$\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}$
Use molecular orbital theory to explain why the $Be_{2}$ molecule does not exist.
Bond order of $C_2$ vapour is :
Which of the following is paramagnetic
What is the number of unpaired electron(s) in the highest occupied molecular orbital of the following species : $N _2: N _2^{+} ; O _2 ; O _2^{+}$?
According to Molecular Orbital Theory,
($A$) $\mathrm{C}_2^{2-}$ is expected to be diamagnetic
($B$) $\mathrm{O}_2{ }^{2+}$ is expected to have a longer bond length than $\mathrm{O}_2$
($C$) $\mathrm{N}_2^{+}$and $\mathrm{N}_2^{-}$have the same bond order
($D$) $\mathrm{He}_2^{+}$has the same energy as two isolated He atoms