In the figure shown, after the switch $‘S’$ is turned from position $‘A’$ to position $‘B’$, the energy dissipated in the circuit in terms of capacitance $‘C’$ and total charge $‘Q’$ is
$\frac{1}{8}\frac{{{Q^2}}}{C}$
$\frac{3}{8}\frac{{{Q^2}}}{C}$
$\frac{5}{8}\frac{{{Q^2}}}{C}$
$\frac{3}{4}\frac{{{Q^2}}}{C}$
A parallel plate capacitor has an electric field of ${10^5}\,V/m$ between the plates. If the charge on the capacitor plate is $1\,\mu \,C$, the force on each capacitor plate is......$N$
A $5\, \mu F$ capacitor is charged fully by a $220\,V$ supply. It is then disconnected from the supply and is connected in series to another uncharged $2.5\;\mu F$ capacitor. If the energy change during the charge redistribution is $\frac{ X }{100} \;J$ then value of $X$ to the nearest integer is$.....$
A parallel plate capacitor is charged fully by using a battery. Then, without disconnecting the battery, the plates are moved further apart. Then,
A series combination of $n_1$ capacitors, each of value $C_1$ is charged by a source of potential difference $4\, V.$ When another parallel combination of $n_2$ capacitors, each of value $C_2,$ is charged by a source of potential difference $V$, it has the same (total) energy stored in it, as the first combination has. The value of $C_2,$ in terms of $C_1$ is then
The energy stored in a condenser is in the form of