In each of the following numbers rationalise the denominator
$\frac{n^{2}}{\sqrt{m^{2}+n^{2}}+m}$
$\frac{n^{2}}{\sqrt{m^{2}+n^{2}+m}}=\frac{n^{2}}{\sqrt{m^{2}+n^{2}+m}} \times \frac{\sqrt{m^{2}+n^{2}}-m}{\sqrt{m^{2}+n^{2}}-m}$
$=\frac{n^{2}\left(\sqrt{m^{2}+n^{2}}-m\right)}{\left(\sqrt{m^{2}+n^{2}}\right)^{2}-(m)^{2}}$
$=\frac{n^{2}\left(\sqrt{m^{2}+n^{2}}-m\right)}{m^{2}+n^{2}-m^{2}}$
$=\frac{n^{2}\left(\sqrt{m^{2}+n^{2}}-m\right)}{n^{2}}$
$=\sqrt{m^{2}+n^{2}}-m$
Convert following rational numbers in decimal form and state the kind of its decimal expansion
$\frac{4}{13}$
Simplify:
$64^{-\frac{1}{3}} + 64^{\frac{1}{3}} - 64^{\frac{2}{3}}$
State whether the following statements are true or false? Justify your answer.
$(i)$ $\frac{\sqrt{2}}{3}$ is a rational number.
$(ii)$ There are infinitely many integers between any two integers.
The number obtained on rationalizing the denominator of $\frac{1}{7-\sqrt{2}}$ is
Rationalise the denominator of the following:
$\frac{16}{\sqrt{41}-5}$