In an experiment, set up $A$ consists of two parallel wires which carry currents in opposite directions as shown in the figure. $A$ second set up $B$ is identical to set up $A$, except that there is a metal plate between the wires. Let $F_A$ and $F_B$ be the magnitude of the force between the two wires in setup $A$ and setup $B$, respectively.

210768-q

  • [KVPY 2016]
  • A

    $F_A > F_B \neq 0$

  • B

    $F_A < F_B$

  • C

    $F_A=F_B \neq 0$

  • D

     $F_A > F_B=0$

Similar Questions

Wires $1$ and $2$ carrying currents ${i_1}$ and ${i_2}$respectively are inclined at an angle $\theta $ to each other. What is the force on a small element $dl$ of wire $2$ at a distance of $r$ from wire $1$ (as shown in figure) due to the magnetic field of wire $1$

  • [AIIMS 2013]

A uniform conducting wire $A B C$ has a mass of $10 \,g$. A current of $2 \,A$ flows through it. The wire is kept in a uniform magnetic field $B=2 T$. The acceleration of the wire will be ............. $ms ^{-2}$

Two long and parallel straight wires $A$ and $B$ carrying currents of $8.0\, A$ and $5.0\, A$ in the same direction are separated by a distance of $4.0\, cm$. Estimate the force on a $10\, cm$ section of wire $A$

A large current carrying plate is kept along $y-z$ plane with $k$ $amp$ current per unit length in the $+ve$ $y$ direction. Find the net force on the semi cricular current carrying looplying in the $x-y$ plane. Radius of loop is $R$, current is $i$ and centre is at $(d,0, 0)$ where $(d > R)$

A square loop $ABCD$ carrying a current $i,$ is placed near and coplanar with a long straight conductor $XY$ carrying a current $I,$ the net force on the loop will be

  • [NEET 2016]