In an clockwise system

  • A
    $\hat j \times \hat k = \hat i$
  • B
    $\hat i.\,\hat i = 0$
  • C
    $\hat j \times \hat j = 1$
  • D
    $\hat k.\,\hat j = 1$

Similar Questions

Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is

Write the distributive law for the product of two vectors. 

State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :
$(a)$ adding any two scalars,
$(b)$ adding a scalar to a vector of the same dimensions ,
$(c)$ multiplying any vector by any scalar,
$(d)$ multiplying any two scalars,
$(e)$ adding any two vectors,
$(f)$ adding a component of a vector to the same vector.

What is the angle between $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P \times \overrightarrow Q )$