એક શાળામાં $20$ શિક્ષકો ગણિત અથવા ભૌતિકવિજ્ઞાન શીખવે છે. આ શિક્ષકો પૈકી $12$ ગણિત શીખવે છે અને $4$ ભૌતિકવિજ્ઞાન અને ગણિત બંને વિષય શીખવે છે. કેટલા શિક્ષકો ભૌતિકવિજ્ઞાન શીખવતા હશે ?
Let $M$ denote the set of teachers who teach mathematics and $P$ denote the set of teachers who teach physics. In the statement of the problem, the word 'or' gives us a clue of union and the word 'and' gives us a clue of intersection. We, therefore, have
$n( M \cup P )=20, n( M )=12 \text { and } n( M \cap P )=4$
We wish to determine $n( P ).$
Using the result $n( M \cup P )=n( M )+n( P )-n( M \cap P )$
we obtain $20=12+n(P)-4$
Thus $n( P )=12$
Hence $12$ teachers teach physics.
એક વર્ગમાં $55$ વિર્ધાથી છે.જો ગણિત પંસંદ કરલે વિર્ધાથીની સંખ્યા $23 , 24$ એ ભૈતિક વિજ્ઞાનમાં ,$19$ એ રસાયણ વિજ્ઞાનમાં ,$12$ એ ભૈતિક વિજ્ઞાન અને ગણિત, $9$ એ ગણિત અને રસાયણ વિજ્ઞાન, $7$ એ ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન ,અને $4$ વિર્ધાથી બધાજ વિષય પંસંદ કરલે છે,તો માત્ર એકજ વિષય પંસંદ કરેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
$20$ શિક્ષકો ગણિત અથવા ભૈતિકવિજ્ઞાન ભણાવે છે.જો $12$ શિક્ષકો ગણિત અને $4$ બંને વિષય ભણાવે છે.તો ભૈતિકવિજ્ઞાન ભણાવતાં શિક્ષકોની સંખ્યા મેળવો.
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.