In a horse race the odds in favour of three horses are $1:2 ,  1:3$ and $1:4$. The probability that one of the horse will win the race is

  • A

    $\frac{{37}}{{60}}$

  • B

    $\frac{{47}}{{60}}$

  • C

    $\frac{1}{4}$

  • D

    $\frac{3}{4}$

Similar Questions

Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $

  • [IIT 1990]

Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$  or $B)$

Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?

If $P(A) = 0.25,\,\,P(B) = 0.50$ and $P(A \cap B) = 0.14,$ then $P(A \cap \bar B)$ is equal to

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ 'the card drawn is a spade'

$F:$ 'the card drawn is an ace'