In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is
$102$
$42$
$1$
$38$
In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is
In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
In a group of $400$ people, $250$ can speak Hindi and $200$ can speak English. How many people can speak both Hindi and English?
In a class of $30$ pupils, $12$ take needle work, $16$ take physics and $18$ take history. If all the $30$ students take at least one subject and no one takes all three then the number of pupils taking $2$ subjects is
In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read at least one of the newspapers.