In a chemical reaction $A$ is converted into $B$ . The rates of reaction, starting with initial concentrations of $A$ as $2 \times {10^{ - 3}}\,M$ and $1 \times {10^{ - 3}}\,M$ , are equal to $2.40 \times {10^{ - 4}}\,M{s^{ - 1}}$ and $0.60 \times {10^{ - 4}}\,M{s^{ - 1}}$ respectively. The order of reaction with respect to reactant $A$ will be
$0$
$1.5$
$1$
$2$
A reaction involving two different reactants
For the reaction
$2 \mathrm{H}_{2}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
the observed rate expression is, rate $=\mathrm{k}_{\mathrm{f}}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] .$ The rate expression of the reverse reaction is
For a general reaction $A \to B$, plot of concentration of $A$ vs time is given in figure. Answer the following question on the basis of this graph.
$(i)$ What is the order of the reaction ?
$(ii)$ What is the slope of the curve ?
$(iii)$ What are the units of rate constant ?
Consider the data given below for hypothetical reaction $A \to X$
$Time (sec)$ Rate $(mol\, L^{-1} sec.^{-1})$
$0$ $1.60 \times 10^{-2}$
$10$ $1.60 \times 10^{-2}$
$20$ $1.60 \times 10^{-2}$
$30$ $1.60 \times 10^{-2}$
From the above data, the order of reaction is
In the reaction $A + B \to $ Products, if $B$ is taken in excess, then it is an example of