किसी निश्चित आवेश वितरण में, शून्य विभव वाले बिन्दुओं को एक वृत्त $S$ के द्वारा जोड़ा गया है। $S$ के अंदर स्थित बिन्दुओं के विभव धनात्मक हैं। तथा बाहर स्थित बिन्दुओं के विभव ऋणात्मक हैं। एक धनात्मक आवेश जो कि गति करने के लिये स्वतंत्र है, $S$ के अंदर रखा गया है
यह साम्यावस्था में रहेगा
यह $S$ के अंदर गति कर सकता है, किन्तु $S$ को क्रॉस नहीं करेगा
एक समय पर यह अवश्य ही $S$ को क्रॉस करेगा
यह गति कर सकता हैं किन्तु तुरंत ही मूल अवस्था में लौट आयेगा
किसी ($R$) त्रिज्या वाले आवेशित चालक गोले के केन्द्र से त्रिज्मीय दूरी $(\mathrm{r})$ के साथ विधुत विभव $(\mathrm{V})$ में परिवर्तनों को निम्न में से कौन सा विकल्प सही निरूपित करता है ?
धातुओं के बने हुए दो गोलाकार समकेन्द्रीय खोलों की त्रिज्या $R$ और $4 R$ है तथा इन पर क्रमश: $Q _{1}$ और $Q _{2}$ आवेश हैं। यदि दोनों खोलों पर सतहीय आवेश घनत्व (surface charge density) समान हो तो विभवान्तर $V ( R )- V (4 R )$ का मान है :
तांबे के गोलीय उदासीन कण की त्रिज्या $10 \,nm \left(1 \,nm =10^{-9} \,m \right)$ है। एक समय पर एक इलेक्ट्रॉन दे कर धीरे-धीरे इस कण पर विभव आरोपित करके आवेशित करते है। कण पर कुल आवेश तथा आरोपित विभव के मध्य आरेख निम्न होगा।
$5 \times 10^{-9} \mathrm{C}$ वाले बिंदु आवेश के कारण, बिंदु $'P'$ पर विद्युत विभव $50 \mathrm{~V}$ है। बिंदु 'P' की बिंदु आवेश से दूरी है: ........$cm$
(माना, $\frac{1}{4 \pi \varepsilon_0}=9 \times 10^{+9} \mathrm{Nm}^2 \mathrm{C}^{-2}$ )
चार आवेश $ + Q,\, - Q,\, + Q,\, - Q$ एक वर्ग के चारों कोनों पर क्रम में रखे हैं। वर्ग के केन्द्र पर