જો બે ગણ  $A$ અને $B$ માં $99$ ઘટકો સામાન્ય છે, તો $A \times B$ અને $B \times A$ ના સામાન્ય ઘટકોની સંખ્યા મેળવો.

  • A

    ${2^{99}}$

  • B

    ${99^2}$

  • C

    $100$

  • D

    $18$

Similar Questions

જો  $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ તો  $(A -B) × (A \cap B)$ મેળવો. 

જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $(A \times B) \cup(A \times C)$

જો $(1, 3), (2, 5)$ અને $(3, 3)$ એ $A × B$ ના ઘટકો હોય અને જો $A \times B$ માં કુલ $6$ ઘટકો છે તો $A \times B$ ના બાકીના ઘટકો મેળવો.

જો $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$તો $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ એ  . . . . . બરાબર છે.

નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A=\{1,2\}, B=\{3,4\},$ તો $A \times\{B \cap \varnothing\}=\varnothing$ છે.