જો બે ગણ $A$ અને $B$ માં $99$ ઘટકો સામાન્ય છે, તો $A \times B$ અને $B \times A$ ના સામાન્ય ઘટકોની સંખ્યા મેળવો.
${2^{99}}$
${99^2}$
$100$
$18$
જો $A = \{ 1,\,2,\,3,\,4\} $; $B = \{ a,\,b\} $ અને $f:A \to B$, તો $A \times B$ મેળવો.
જો $n(A)=3$ અને $n(B)=2$ હોય તેવા બે ગણો $A$ અને $B$ હોય અને ભિન્ન ઘટકો $x, y$ અને $z$ માટે $(x, 1),(y, 2),(z, 1)$ એ $A \times B$ ના ઘટકો હોય તો $A$ અને $B$ શોધો.
જો $(1, 3), (2, 5)$ અને $(3, 3)$ એ $A × B$ ના ઘટકો હોય અને જો $A \times B$ માં કુલ $6$ ઘટકો છે તો $A \times B$ ના બાકીના ઘટકો મેળવો.
જો કાર્તેઝિય ગુણાકાર $A$ $\times$ $A$ ના ઘટકોની સંખ્યા $9$ હોય અને તેમાંના બે ઘટકો $(-1,0)$ અને $(0,1)$ હોય, તો $A$ શોધો તથા $A$ $\times$ $A$ ના બાકીના ઘટકો લખો.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cap C)$