Let the circles $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ and $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ touch each other externally at the point $(6,6)$. If the point $(6,6)$ divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio $2: 1$, then $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$ equals
$110$
$130$
$125$
$145$
Let $C_1$ be the circle of radius $1$ with center at the origin. Let $C_2$ be the circle of radius $\mathrm{I}$ with center at the point $A=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is
The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$ having its centre on the line, $2 x-3 y+12=0$, also passes through the point
The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is
The locus of the mid points of the chords of the circle $C_1:(x-4)^2+(y-5)^2=4$ which subtend an angle $\theta_i$ at the centre of the circle $C_1$, is a circle of radius $r_i$. If $\theta_1=\frac{\pi}{3}, \theta_3=\frac{2 \pi}{3}$ and $r_1^2=r_2^2+r_3^2$, then $\theta_2$ is equal to
Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)