If three numbers be in $G.P.$, then their logarithms will be in
$A.P.$
$G.P.$
$H.P.$
None of these
A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are
Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?
$(A)$ $T_{20}=1604$
$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$
$(C)$ $T_{30}=3454$
$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$
Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$
Insert five numbers between $8$ and $26$ such that resulting sequence is an $A.P.$
If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......