If there is an error of $1\%$ in calculation of mass of disc and $1.5\%$ error in radius, then $\%$ error in moment of inertia about an axis tangent to disc is .......... $\%$
$2.5 $
$4$
$3.5$
$5$
Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is
The radius of a sphere is measured to be $(7.50 \pm 0.85) \,cm .$ Suppose the percentage error in its volume is $x$. The value of $x$, to the nearest integer is .....$\%$
A student performs an experiment for determination of $g \left(=\frac{4 \pi^{2} l }{ T ^{2}}\right), \ell =1 m$ and he commits an error of $\Delta \ell$. For $T$ he takes the time of $n$ oscillations with the stop watch of least count $\Delta T$ and he commits a human error of $0.1 s$ For which of the following data, the measurement of $g$ will be most accurate?
A wire has a mass $0.3 \pm 0.003\,g$, radius $0.5 \pm 0.005\,mm$ and length $6 \pm 0.06\,cm$. The maximum percentage error in the measurement of its density is .......... $\%$
The mass of the body is $10.000\,g$ and its volume is $10.00\,cm^3$. If the measured values are expressed upto the correct significant figures, the maximum error in the measurement of density is